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The Programming Language of Chemical Kinetics, 
and How To Discipline Your DNA Molecules with 

Strand Displacement Cascades

DNA 17 Tutorial 2:
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Living cells are controlled by the most complex signaling networks. 
Can we (1) understand the function of these networks, (2) be able to 

engineer new ones with desired function?
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Drug Discovery & Development magazine: Vol. 11, No. 8, August, 2008, pp. 22-25.
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in vitro data model of phosphorylation reactions 
between A=KaiA, B=KaiB, C=KaiC

?+@+@)7+$#($+3A$1,)#*,#A$BCDA$EFEGEFHA$ICCH
J+*$K'*$#($+3A$L?M1A$FCEN$OEICGOEIHA$ICCO

Living cells are controlled by the most complex signaling networks. 
Can we (1) understand the function of these networks, (2) be able to 

engineer new ones with desired function?
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http://www.artbywicks.com

Engineer embedded controllers for artificial biochemical systems, 
“wet robots”, smart drugs, etc

Want to notice patterns in biological signaling/regulatory networks

Living cells are controlled by the most complex signaling networks. 
Can we (1) understand the function of these networks, (2) be able to 

engineer new ones with desired function?

Tuesday, September 20, 2011



The Programming Language of Chemical Kinetics

Using the language of Chemical Reaction Networks (CRNs) 
prescriptively as a “programming language” rather than descriptively as 

a modeling language for existing systems

Part 1 of 2:

Real programmers code in CHEMISTRY
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•  Stochastic CRN model

•  Mass-action CRN model

•  Stochastic CRNs: 

•  illustrative examples: arithmetic operations

•  characterizing deterministic behavior

•  allowing error permits much more complex behavior (Turing 
universality)

•  Mass-action CRNs:

•  dynamical systems

• circuits

Outline of Part 1
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stochastic: discrete state space, 
continuous time Poisson process

mass-action: continuous ODEs

Chemical Reaction Networks (CRN)

1 : X1
30−→ 2X1

2 : 2X1
0.5−→ X1

3 : X2 +X1
1−→ 2X2

4 : X2
10−→

5 : X1 +X3
1−→

6 : X3
16.5−→ 2X3

7 : 2X3
0.5−→ X3

syntax: two possible semantics:
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Stochastic CRNs model

•Finite set of species {A, B, C, D...}.  A state is a vector of non-
negative integers, specifying the molecular counts of each species.  We 
also write molecular counts as #A, #B...

•Finite set of reactions. Each reaction is specified in chemical notation; 
for example:

indicates a reaction in which the counts of A and B are decreased by 1, 
and the count of C is increased by 1.   Each reaction has an associated 
rate constant k.  (Unimolecular rate constants have units of sec-1, 
bimolecular rate constants have units of liters·molecules-1·sec-1)

McQuarrie 1967, van Kampen, Gillespie 1977, etc

kA + B ! C 

continued !
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A k−→ . . .

A+B k−→ . . .

A+A k−→ . . .

reaction type propensity     : the probability of reaction j in time instant dt 

∑a j

a j

a j∗/∑a j

time until next reaction is exponential random variable with rate 

probability that next reaction is j* is

•The system evolves via a continuous time Poisson process:

McQuarrie 1967, van Kampen, Gillespie 1977, etc

Stochastic CRNs model

k · #A
k · #A · #B/v
k · #A(#A−1)/v
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Scaling from stochastic to mass-action

Increase solution volume v and the molecular counts of all species such that for each 
species #X/v stays constant. (Because we measure mass-action concentration in moles/
liter, we have to multiply bimolecular rate constants by Avogadro’s number.)

In this way we get mass-action regime in the limit v→∞.
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Mass-action CRNs model

•Finite set of species {A, B, C, D...}.  A state is a vector of non-
negative real numbers, specifying the concentrations of each species.  
We also write concentrations as [A], [B]...

•Finite set of reactions. Each reaction is specified in chemical notation; 
for example:

Each reaction has an associated (mass-action) rate constant k. 
(Unimolecular rate constants have units of sec-1, bimolecular rate 
constants have units of molar-1·sec-1)

kA + B ! C 

continued !
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• In any state reaction fluxes are as follows:

A k−→ . . .

A+B k−→ . . .

A+A k−→ . . .

reaction type reaction flux      (moles·liter-1·second-1)a j

k · [A]
k · [A] · [B]
k · [A]2

d
dt

[X ] = ∑
reaction j

a j· [net stoichiometry change of X in reaction i]

•The system behaves according to the ODEs:

Mass-action CRNs model

general case formally:

A k1−→ B

B+B k2−→ C

d[A]
dt

= −k1[A]

d[B]
dt

= k1[A]−2k2[B]2

d[C]
dt

= k2[B]2

example:
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Physical justification for CRNs

Assumptions for stochastic:
• well-mixedness
• bouncing ball interactions
• instantaneous reactions

What about thermodynamics, conservation of mass?
• thermodynamics says all reactions must be reversible
• if a reaction can occur with a catalyst, it must occur without it (at a slower rate)
• closed system must satisfy Gibbs free energy
• molecules are made of atoms; must be consistent with atomic decomposition and 

conservation of mass

Extra assumptions for mass-action:
• large molecular counts of all species

McQuarrie 1967, van Kampen, Gillespie 1977, 1992, etc

Kurtz, “The relationship between stochastic and deterministic models for 
chemical reactions”, J Chem Phys 57:2976, 1972

open systems, implicit energy and mass sources, effectively 
irreversible reactions, high energy barriers
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Abstract CRNs have been extensively 
theoretically investigated

• simulation: accuracy, computation time
• equilibrium analysis: number of steady states, bistability?, oscillation?, limit cycle?, 

chaos?
• deviant behavior of stochastic compared to mass-action
• derived models: Michaelis-Menten, Hill functions, GRNs, S-Systems, NHCA, etc
• time-separation arguments
• network motifs: search and in-silico evolution

But designing molecular algorithms? Not so 
much...
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Judging speed of chemical “algorithms”

• Can speed up any behavior by a factor of α if we multiply all rate constants 
by α.

• Can speed up behavior by increasing molecular counts but keeping volume 
the same.  This translates to increasing concentration in mass-action.

• fix largest rate constant (say k=1)

• asymptotically, volume v = O(total molecular count).  This translates to bounding 
maximum concentrations in mass-action.

impossible: must remain well-mixed, respect finite density of matter

not meaningful

Thus for meaningful analysis of speed of chemical “algorithms”:
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Programming exercise 1: 
#B := 2!#A n A’s

A!B+B1 1
n

+
1

n−1
+ · · ·+ 1

1
= Θ(logn)

expected time for one instance of reaction
whose propensity is #A = n

expected time of this algorithm:                                                  (fast!)

Eventually produce the right number of B’s

Programming exercise 2: 
Detect a molecule of A

volume v ! n
among n molecules in solution

Whole test-tube eventually “turns Yellow” if and only if there is at least one molecule of A

Programming exercises with stochastic CRNs

A+X!A+Y
X+Y!Y+Y

1

1
expected time of this algorithm:                                          (fast!) 1 + Θ(logn) = Θ(logn)

expected time for one instance of first reaction
whose propensity is (#A·#X)/v = (1·n)/n = 1

expected time for n instances of second reaction
whose propensity is (#X·#Y) / v

start with n X
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Programming exercise 3: 
#A := 2!#A n A’s

Even in the limit t→∞ must be some probability of error.

volume v ! n

1

1

expected time of this algorithm: at least n    (slow!) 

Expected time for the last A to react with T or F.
Propensity of this reaction is (#A·#T,F) / v = (1·1)/n

start with 1T and n A

A+T → F
A+F → T

Programming exercise 4: 
Is #A even? volume v ! n

Eventually converge to the right answer.

n A’s

Programming exercises with stochastic CRNs
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Species T and F representing output.
YES is absorbing set of states with #T>0, #F=0.
NO is absorbing set of states with #T=0, #F>0.
Everything else (not in YES or NO) can have arbitrary #T, #F.
YES is reachable from any state that is reachable from a yes-input, but 
is not reachable from any no-input.
NO is reachable from any state that is reachable from a no-input, but is 
not reachable from any yes-input.

(For simplicity assume finite state space for any input. Need to be more 
careful for infinite state spaces (eg. A→2A), but intuition is the same.)

How can stochastic CRNs compute 
“deterministically”?

Let’s start with computing predicates (well-studied).

Angluin, Aspnes, Eisenstat, Ruppert, “The Computational Power of Population Protocols,” 
Distributed Computing 20: 279-304 (2006)
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How can stochastic CRNs compute 
“deterministically”?

Examples of computing a predicate in this way:

Predicate:  #A > #B

start with 1F and input 
amounts of A, B

A+F → T
B+T → F

Predicate:  #A is even

start with 1T and input 
amount of A

A+T → F
A+F → T

Predicate:  #A > #B and #A is even

start with 1 F1, 1 T2, 1 F 
and input amounts of A, B

A+T2 → A’+F2
A+F2 → A’+T2

A’+F1 → T1
B+T1 → F1

F1+T → F1+F
F2+T → F2+F
T1+T2 ↔ TT
TT+F → TT+T
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Boolean combination of threshold predicates and modulo 
predicates:

threshold predicate: {x | x⋅v ≥r}

modulo predicate: {x | x⋅v ≡ r (mod m)}

How can stochastic CRNs compute 
“deterministically”?

Then the class of predicates that can be computed is well-characterized:
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Stochastic CRNs are Turing Universal, allowing an (arbitrarily 
small, non-zero) error probability

• Arbitrarily small, non-zero error probability over all time. Error probability 
controlled by initial molecular count of “accuracy species”

• Two kinds of constructions: Register Machine simulation, Turing Machine simulation

• Turing universal computation can be made fast: t=poly(number of TM steps). 

• But: Register machine or Turing machine simulation just doesn’t feel natural for 
CRNs. Information is stored in unary. Register machine: slow;Turing machine: too 
many reactions. Has a feeling of shoehorning existing paradigms to a very different 
system. 

David Soloveichik, Matt Cook, Erik Winfree, Shuki Bruck, “Computation with Finite 
Stochastic Chemical Reaction Networks”, Natural Computing 7:615-633 (2008)
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conc
Oregonator (limit cycle oscillator)

Rössler (chaotic)

conc

time
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Which dynamical systems can be 
implemented with mass-action CRNs?
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Which dynamical systems can be 
implemented with mass-action CRNs?

Some ODEs cannot be directly implemented 

Example (linear oscillator):

Problems: 
(1) Chemical concentrations cannot be negative.
(2) A species must appear as a reactant to be consumed.  Thus the rate of its 
consumption must be proportional to its concentration.

ẋ = -y
ẏ = x

ẋ = [Xp]-[Xn] = [Yn]-[Yp] = -y
. .

x

y

(0,0)

Solution with representation change:   x = [Xp]-[Xn]    y=[Yp]-[Yn]

Kevin Oishi and Eric Klavins, “A biomolecular implementation of linear I/O 
systems”, IET Systems Biology, 5: 252–260 (2011)

Yp → Xn + Yp
Yn → Xp + Yn

Xp + Xn → ∅

Xp → Yp + Xp
Xn → Yn + Xn

Also: see Kevin Oishi’s poster at DNA17

1

1

1

1

fast
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Which dynamical systems can be 
implemented with mass-action CRNs?

It is always possible to construct a CRN in which the concentration of some species 
coincides with any desired accuracy for any desired period of time with the behavior of a 
given system of polynomial ODEs with non-negative integer powers.

Constructed CRN has the following properties
-conservation of mass
-reactions of very simple form: at most two reactants and at most two products
-no autocatalysis

Korzuhin’s theorem: 

(Applies only to the behavior of the ODEs in the positive orthant.)

Korzuhin, Oscillatory Processes in Biological and Chemical Systems (Nauka, Moscow), (in Russian), pp 231–251 (1967)

Klonowski, “Simplifying principles for chemical and enzyme reaction kinetics,” Biophys Chem 18:73–87 (1983)
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A+B→C A→C
B→C

Logic circuits with mass-action CRNs

-no signal restoration

-not dynamic or reusable: can’t change input values to get new output

-slow: for a single gate, if [A]=[B] then [A](t)=[B](t)=O(1/t) not O(e-t) Seelig and Soloveichik, “Time- 
complexity of multilayered 
DNA strand displacement 
circuits” in DNA 15

Problems:
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xy z
x(0)+y(1)      onw
onw+w(0)      onw+w(1)

logic thresholding

w(0)+w(0)      offz
w(1)+w(1)      onz

onz+z(0)      onz+z(1)
offz+z(1)      offz+z(0)

x(1)+w(1)      x(1)+w(0)
y(0)+w(1)      y(0)+w(0)

Dynamic logic circuits with mass-action CRNs
x y z

0 0 0

0 1 1

1 0 0

1 1 0

!"#"$%&'(&)*+!%%#&,*+-&./0%%*1234+56+5+7.&$%065#+67869059%+/"0+'(%:&'5#+)&.%;'61*+!"#$*+<=>?+@ABAC@ABD+EF=<=G

dual rail 
representation:

species      value 
x(0) x(1)
high  low        0
low   high       1

x

2-bit pulse counter 
(digital circuit)

where

0
0

20 40 60 80 100 time

conc

30

60
0

30

60

x(0)+y(1)+w(0)      x(0)+y(1)+w(1) w(0)+w(0)+z(1)      w(0)+w(0)+z(0)
w(1)+w(1)+z(0)      w(1)+w(1)+z(1)x(1)+w(1)      x(1)+w(0)

y(0)+w(1)      y(0)+w(0)

logic thresholding
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Dynamic logic circuits with mass-action CRNs:
signal restoration

H5,.56'"*+IJ(%:&'5#+)&.%;'6+&6+K70&.,+7.&$%065#1*+!%&'()*+,
-./(.0,1.2.3'+>D?+<<B=C<<BA+E<BB>G

w(0)+w(0)+z(1) → w(0)+w(0)+z(0)
w(1)+w(1)+z(0) → w(1)+w(1)+z(1)

1

1

w(0)+w(1) → sw
        sw+w(0) → 3 w(0)
        sw+w(1) → 3 w(1)

1

1

1

L&5.,*+M&%N%#+5.N+O50(&*+I2&,&95#+P",&'+Q&9(+
H"#%'7#50+M%5';".6*1+678:&R%NS

Cooperativity Majority Algorithm

Tuesday, September 20, 2011



Luca Cardelli, “Artificial Biochemistry”, in Algorithmic Bioprocesses. Springer (2009)
( http://lucacardelli.name/Papers/Artificial%20Biochemistry.pdf )

Tuesday, September 20, 2011
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How To Discipline Your DNA Molecules with Strand 
Displacement Cascades

Strand Displacement Cascades is a flexible technology for implementing 
complex nucleic-acid reaction networks in the laboratory

Part 2 of 2:
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Approach: No “alien” technology: only what we can understand and build

Long-term goals: 
-Insert desired control module into cells? Medical applications? Smart drugs? 
-Abiological systems: control modules for nanomotors, self-assembly, polymerization, other 
kind of chemistries? “Wet robot”?
-Develop clarity of thought for understanding biological signaling networks

Engineering artificial signaling networks
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The strand displacement reaction

Green, C & Tibbetts, C. (1981) Nucleic Acids Research 9, 1905
Weinstock, P & Wetmur, J. (1990) Nucleic Acids Research 18, 4207
Panyutin, I & Hsieh, P. (1993) Journal of molecular biology 230, 413
...

enzyme-free strand displacement aka branch migration

Yurke, B & Mills, A. P. (2003) Genetic Programming and Evolvable Machines 4, 
111

first systematic use in DNA nanotechnology
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Seelig, Soloveichik, Zhang, Winfree, “Enzyme-free nucleic 
acid logic circuits,” Science 314, 1585 (2006).

Dirks, Pierce, “Triggered amplification by hybridization chain reaction,” 
PNAS 101, 15275 (2004).

Diagrams from: Zhang, Seelig, “Dynamic DNA nanotechnology using strand-displacement reactions”, Nature Chemistry 3, 103 (2011).

Cascading of strand displacement reactions
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• Bind two complementary domains
• Release any strand held by only a short domain
• Displace a domain by an identical domain if this extends 

existing hybridization

possible moves:

Strand Displacement Cascades

1 2

2

4 5

43

2 3

4*3*2*1*

short domain (aka toehold) long domain (aka displacement domain)
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• Bind two complementary domains
• Release any strand held by only a short domain
• Displace a domain by an identical domain if this extends 

existing hybridization

possible moves:

Strand Displacement Cascades

1 2

2

4 5

43

2 3

4*3*2*1*
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• Bind two complementary domains
• Release any strand held by only a short domain
• Displace a domain by an identical domain if this extends 

existing hybridization

possible moves:

Strand Displacement Cascades

1

2

2

4 5

43

2 3

4*3*2*1*
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• Bind two complementary domains
• Release any strand held by only a short domain
• Displace a domain by an identical domain if this extends 

existing hybridization

possible moves:

Strand Displacement Cascades

1 2

2

4 5

43

2

3

4*3*2*1*
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• Bind two complementary domains
• Release any strand held by only a short domain
• Displace a domain by an identical domain if this extends 

existing hybridization

possible moves:

Strand Displacement Cascades

1 2

2

4 5

43

2 3

4*3*2*1*
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• Bind two complementary domains
• Release any strand held by only a short domain
• Displace a domain by an identical domain if this extends 

existing hybridization

possible moves:

Strand Displacement Cascades

1 2

2

4 5

4

3

2 3

4*3*2*1*
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• Bind two complementary domains
• Release any strand held by only a short domain
• Displace a domain by an identical domain if this extends 

existing hybridization

possible moves:

Strand Displacement Cascades

1 2

2

4 5

4

3

2 3

4*3*2*1*
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• Bind two complementary domains
• Release any strand held by only a short domain
• Displace a domain by an identical domain if this extends 

existing hybridization

possible moves:

Strand Displacement Cascades

1 2

2

4

54

3

2 3

4*3*2*1*
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• Bind two complementary domains
• Release any strand held by only a short domain
• Displace a domain by an identical domain if this extends 

existing hybridization

possible moves:

Strand Displacement Cascades

1 2

2

4

54

3

2 3

4*3*2*1*
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• Bind two complementary domains
• Release any strand held by only a short domain
• Displace a domain by an identical domain if this extends 

existing hybridization

possible moves:

Strand Displacement Cascades

1

2

2

4

54

3

2 3

4*3*2*1*
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1 2

2

4 5

43

2 3

4*3*2*1* 4*3*2*1*

1 2 4 5

4*3*2*1*

1 2 4 5 2 43

4*3*2*1*

1 2 4 5

2 3

catalyst

fuel

substrate

outputcatalyst

Strand Displacement Cascades 
example: Catalyst

Zhang, Turberfield, Yurke, Winfree, Science 318: 1121-1125, 2007
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AND Logic Gate

based on Seelig, Soloveichik, Zhang, Winfree, Science 314: 1585-1587 (2006)

2 3 5 76 84

0* 3*2* 4*

5* 6*4*3*

2 3

5 76 8

4

3*

2*

5* 6*4*

4*3*

5 76 8

3* 5* 6*4*

0*

1 54 6

1
5

76 85

4 6

3* 5* 6*4*

input X waste

intermediate

intermediate waste

AND gate

input Y output Z
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AND Logic Gate

input Y

2 3

1

5 76 8

54

4

6

0* 3*2* 4*

5* 6*4*3*

input X

based on Seelig, Soloveichik, Zhang, Winfree, Science 314: 1585-1587, 2006
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AND Logic Gate

input Y

2 3

1

5 76 8

54

4

6

0*

3*

2*

4*

5* 6*4*3*

based on Seelig, Soloveichik, Zhang, Winfree, Science 314: 1585-1587, 2006
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AND Logic Gate

input Y

2 3

1

5 76 8

54

4

6

3*

2* 5* 6*4*3*0*

based on Seelig, Soloveichik, Zhang, Winfree, Science 314: 1585-1587, 2006
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AND Logic Gate

input Y

2 3

1

5 76 8

54

4

6

3*

2*

5* 6*4*

4*3*0*
waste

based on Seelig, Soloveichik, Zhang, Winfree, Science 314: 1585-1587, 2006
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AND Logic Gate

2 3

1

5 76 8

5

4

4

6

3*

2*

5* 6*4*

4*3*0*
waste

based on Seelig, Soloveichik, Zhang, Winfree, Science 314: 1585-1587, 2006
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AND Logic Gate

2 3

1

5 76 8

5

4

4

6

3*

2*

5* 6*4*

4*3*0*
waste

based on Seelig, Soloveichik, Zhang, Winfree, Science 314: 1585-1587, 2006
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AND Logic Gate

2 3

1

5

76 85

4

4

6

3*

2*

5* 6*4*

4*3*0*

output Z

waste

waste

based on Seelig, Soloveichik, Zhang, Winfree, Science 314: 1585-1587, 2006
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AND Logic Gate

based on Seelig, Soloveichik, Zhang, Winfree, Science 314: 1585-1587 (2006)

2 3 5 76 84

0* 3*2* 4*

5* 6*4*3*

2 3

5 76 8

4

3*

2*

5* 6*4*

4*3*

5 76 8

3* 5* 6*4*

0*

1 54 6

1
5

76 85

4 6

3* 5* 6*4*

input X waste

intermediate

intermediate waste

AND gate

input Y output Z
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Translator Gates: 
complete sequence independence

3 54 6

3* 4*2*

3 54 6

3* 4*2*

input X

wasteTranslator gate 1

intermediate output

3 54 6

intermediate output

1 32 4

1 32 4

5 76 8

5* 6*4*

5 76 8

5* 6*4*
wasteTranslator gate 2

output Y

3 54 6

based on Seelig, Soloveichik, Zhang, Winfree, Science 314: 1585-1587, 2006
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65 7 8

87

7* 8*6*

65 7 8

87

7* 8*6*

Experimental technique: Fluorescent readout

BHQ-1:

TAMRA:
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AND

AND

OR

let-7c

miR-124a

miR-15a

miR-10b

miR-143

miR-122a

OR

trans

trans

trans

amp

trans

trans trans

restore
AND

Experimental Data for One AND Gate 
and an 11-gate Logic Circuit

Seelig, Soloveichik, Zhang, Winfree, Science 314: 1585-1587, 2006
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varying amounts 
of catalyst

Experimental Data for Catalyst

Zhang, Turberfield, Yurke, Winfree, Science 318: 1121-1125, 2007
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VisualDSD: A formal language for describing and modeling 
strand displacement cascades

 <1>[2]:<6>[3^ 4]:5^*    
=  

Lakin, Phillips, Cardelli at Microsoft Research
http://lepton.research.microsoft.com/webdna/
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Flash Game Demo

You can play it too:
http://games.cs.washington.edu/DNA_Game/DNA.html

Play the introductory levels to get to the exponential amplifier challenge. 
You can submit your solution to the challenge through the game website.

Rich Snider, Dmitry Danilov and Zoran Popovic
collaboration with Georg Seelig, David Baker

Tuesday, September 20, 2011



The largest strand displacement cascades implemented in the 
laboratory used “see-saw” gates

4 simple element types:

Tuesday, September 20, 2011



Qian, Winfree, “Scaling up digital circuit computation with DNA 
strand displacement cascades,”  Science 332: 1196-1201 (2011)

130 DNA strands
74 initial DNA species (excluding inputs)

(fig. S5). In all tested cases, the output went to
the correct ON or OFF state. A three-OR cascade
(fig. S6, A and B) and a four-OR cascade (fig. S6,
C and D) also worked. The delay time required
for circuit computation increased linearly with
the number of layers (Fig. 3A). However, once
the threshold for the output gate was exceeded,
the signal increased at roughly the same rate as
in the smaller circuit (Fig. 3B). In a circuit with
four layers, two AND gates, and three OR gates,
with 12 different combinations of inputs, the
output went to clear and correct ON or OFF
states in 8 hours (Fig. 3C).

Because integrating gates support multiple
inputs and amplifying gates support multiple
outputs, logic gates built from a pair of them can
easily support fan-in and fan-out. In a circuit with
a four-input OR gate, only when all inputs from
the upstream OR gates were OFF did the output

stay OFF (Fig. 3D). In a circuit with a four-output
OR gate, each output copied the correct logic
from the upstream OR gate (Fig. 3E). Circuits
with a four-input AND gate and a four-output
AND gate are shown in fig. S8C and fig. S9C,
respectively.

To demonstrate a digital circuit with an inter-
esting function, we built a circuit that computes
the floor of the square root of a four-bit binary
number (Fig. 4A). It is not an optimized digital
logic circuit; it is designed to showcaseAND,OR,
NOT, NAND, NOR, fan-in, and fan-out of logic
gates, aswell as fan-out of input signals. NOTgates
are difficult to implement directly using represen-
tations where the ON or OFF state of an input is
determined by the presence or absence of a single
DNA species: A circuit might compute a false
output before all input strands are added, because
NOT gates already produce ON signals in the

absence of their inputs, and for use-once circuits
(such as seesaw circuits), computations cannot
be undone. Therefore, we use dual-rail logic (fig.
S10B). Each input is replaced by a pair of inputs,
representing logic ON and OFF separately. Each
logic gate is replaced by a pair of AND or OR
gates. (Taking the NOR gate as an example, out-
put being OFF is the OR of both inputs being
ON; output being ON is the AND of both inputs
being OFF.) Initially, the pair of inputs is absent,
indicating that the logic value of this signal is un-
known. At the beginning of computation, one in-
put of the pair will be added, indicating either
logic ON orOFF. In this way, no computationwill
take place before the input signals arrive. With
dual-rail logic, any AND-OR-NOTcircuit can be
transformed into an equivalent circuit with AND
or OR gates only. Then, anyAND-OR circuit can
be further transformed into an equivalent seesaw

Fig. 4. A square-root circuit implemented with the seesaw DNA motif. (A)
A digital logic circuit that computes the floor of the square root of four-bit
binary numbers. (B) Abstract diagram of the seesaw circuit that is equiv-
alent to the square-root digital logic circuit. x0i and x1i are dual-rail inputs
of xi, and they represent logic OFF and ON, respectively (the same rule
applies to the outputs). Each pair of seesaw gates implements an AND (∧)
or OR (∨) gate. Each pair of dual-rail AND or OR gates implements one
ANDNOT, OR, NAND, or NOR gate. Red dots indicate positive red numbers,
specifying initial relative concentrations of free or bound signals; red cir-
cles indicate negative red numbers, specifying initial relative concentra-

tions of thresholds or reporters. An example of a two-input, two-output OR
gate is highlighted; full details are provided in fig. S10. (C) Kinetics
experiments of the square-root circuit with all combinations of inputs from
0000 to 1111. All 16 plots are shown separately in fig. S11. (D) Kinetics
experiments that compute the square roots of 0, 1, 4, and 9. Trajectories
and their corresponding outputs have matching colors. Dotted and solid
lines indicate dual-rail outputs that represent logic OFF and ON, respec-
tively. Sequences of strands are listed in tables S4 to S7. Experiments were
performed at 25°C, 1× = 50 nM, and 0.1× was used for OFF and 0.9× for
ON inputs.
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(fig. S5). In all tested cases, the output went to
the correct ON or OFF state. A three-OR cascade
(fig. S6, A and B) and a four-OR cascade (fig. S6,
C and D) also worked. The delay time required
for circuit computation increased linearly with
the number of layers (Fig. 3A). However, once
the threshold for the output gate was exceeded,
the signal increased at roughly the same rate as
in the smaller circuit (Fig. 3B). In a circuit with
four layers, two AND gates, and three OR gates,
with 12 different combinations of inputs, the
output went to clear and correct ON or OFF
states in 8 hours (Fig. 3C).

Because integrating gates support multiple
inputs and amplifying gates support multiple
outputs, logic gates built from a pair of them can
easily support fan-in and fan-out. In a circuit with
a four-input OR gate, only when all inputs from
the upstream OR gates were OFF did the output

stay OFF (Fig. 3D). In a circuit with a four-output
OR gate, each output copied the correct logic
from the upstream OR gate (Fig. 3E). Circuits
with a four-input AND gate and a four-output
AND gate are shown in fig. S8C and fig. S9C,
respectively.

To demonstrate a digital circuit with an inter-
esting function, we built a circuit that computes
the floor of the square root of a four-bit binary
number (Fig. 4A). It is not an optimized digital
logic circuit; it is designed to showcaseAND,OR,
NOT, NAND, NOR, fan-in, and fan-out of logic
gates, aswell as fan-out of input signals. NOTgates
are difficult to implement directly using represen-
tations where the ON or OFF state of an input is
determined by the presence or absence of a single
DNA species: A circuit might compute a false
output before all input strands are added, because
NOT gates already produce ON signals in the

absence of their inputs, and for use-once circuits
(such as seesaw circuits), computations cannot
be undone. Therefore, we use dual-rail logic (fig.
S10B). Each input is replaced by a pair of inputs,
representing logic ON and OFF separately. Each
logic gate is replaced by a pair of AND or OR
gates. (Taking the NOR gate as an example, out-
put being OFF is the OR of both inputs being
ON; output being ON is the AND of both inputs
being OFF.) Initially, the pair of inputs is absent,
indicating that the logic value of this signal is un-
known. At the beginning of computation, one in-
put of the pair will be added, indicating either
logic ON orOFF. In this way, no computationwill
take place before the input signals arrive. With
dual-rail logic, any AND-OR-NOTcircuit can be
transformed into an equivalent circuit with AND
or OR gates only. Then, anyAND-OR circuit can
be further transformed into an equivalent seesaw

Fig. 4. A square-root circuit implemented with the seesaw DNA motif. (A)
A digital logic circuit that computes the floor of the square root of four-bit
binary numbers. (B) Abstract diagram of the seesaw circuit that is equiv-
alent to the square-root digital logic circuit. x0i and x1i are dual-rail inputs
of xi, and they represent logic OFF and ON, respectively (the same rule
applies to the outputs). Each pair of seesaw gates implements an AND (∧)
or OR (∨) gate. Each pair of dual-rail AND or OR gates implements one
ANDNOT, OR, NAND, or NOR gate. Red dots indicate positive red numbers,
specifying initial relative concentrations of free or bound signals; red cir-
cles indicate negative red numbers, specifying initial relative concentra-

tions of thresholds or reporters. An example of a two-input, two-output OR
gate is highlighted; full details are provided in fig. S10. (C) Kinetics
experiments of the square-root circuit with all combinations of inputs from
0000 to 1111. All 16 plots are shown separately in fig. S11. (D) Kinetics
experiments that compute the square roots of 0, 1, 4, and 9. Trajectories
and their corresponding outputs have matching colors. Dotted and solid
lines indicate dual-rail outputs that represent logic OFF and ON, respec-
tively. Sequences of strands are listed in tables S4 to S7. Experiments were
performed at 25°C, 1× = 50 nM, and 0.1× was used for OFF and 0.9× for
ON inputs.
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Logic circuits with see-saw gates

Tuesday, September 20, 2011

http://www.sciencemag.org/content/332/6034/1196.abstract
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of an integrating gate and an amplifying gate, in order to suppress leak
(Fig. 3c). The values of weights and thresholds determined by in silico
training were used to determine the concentrations of the 72 DNA
species that comprise the memory (Fig. 3b, c). In principle, the same
set of DNA molecules could be retrained to remember any of 500
distinct sets of patterns by adjusting weight and threshold concentra-
tions (Supplementary Information section 5).
In the tradition of using game-playing automata as a benchmark for

new computing technologies, we demonstrated the Hopfield network
in the context of a game called ‘read your mind’, which is played
between a human and the DNA associative memory in a cuvette
(Fig. 3d). The game consists of three steps. First, the human thinks
of a scientist, choosing from the listed four options (each scientist
corresponds to one of the four patterns; for example, Franklin is
0110) or someone else. Second, the human ‘tells’ the DNA associative
memory some of the answers to questionsQ1 toQ4 (Fig. 3d) by adding
corresponding DNA strands to the cuvette. Finally, after 8 h of ‘think-
ing’, the DNA associative memory will guess who is in the human’s
mind and ‘tell’ the human the rest of the answers by fluorescence
signals. In doing so, the four-neuron DNA associative memory exhi-
bits a brain-like behaviour: associative recall of memories based on
incomplete information.
Weplayed the game 27 timeswith theDNAassociativememory, out

of 81 possible ways of answering questions Q1 to Q4. Six examples are

shown in Fig. 3e; the rest are shown in Supplementary Figs 15–18. The
top left data in Fig. 3e can be interpreted as following: when the human
‘said’ that the scientist was born in the twentieth century (input x35 1)
but was not a mathematician (input x45 0), the DNA associative
memory ‘guessed’ that the scientist did not study neural networks (out-
put x1 was updated to 0) but was British (output x2 was updated to 1),
which indicated that the scientist was Rosalind Franklin (pattern 0110).
Similarly, the DNA associative memory was able to work out the other
three scientists correctly—in the best case, only one answer was given by
thehuman (themiddle right data). Thebottomleft data shows thatwhen
the informationprovided by the humanmatchedmultiple patterns (that
is, input x45 1 indicates that the scientist was amathematician, which is
true for both Alan Turing and Claude Shannon), the DNA associative
memory was able to identify that they were both born in the twentieth
century (output x3 was updated to 1), while the other outputs remained
unknown. The bottom right data show that the DNA associative
memory was also able to recognize information that was incompatible
with all memorized patterns by producing invalid output.
All experiments reported here were semiquantitatively reproduced

bymass action simulations using the exact model developed previously
for seesaw digital logic circuits17 with no changes to any rate constants
(see Supplementary Information section 7 and Supplementary Figs 19–
24 for comparisons to experiments, and Supplementary Figs 25–27 for
simulation predictions for the remaining 54 games).
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Figure 3 | A four-neuron Hopfield associative memory. a, The recurrent
linear threshold circuit. b, The resulting seesaw circuit using the dual-rail
implementation.Dashed lines indicate the connections to reporters. c, Four sets
of reporters with signal restoration that are connected to either x0i or x

1
i at any

given time. d, A ‘read your mind’ game between a human and the four-neuron
DNA associative memory that ‘remembers’ four scientists according to the
answers of four questions. e, Kinetics experiments of the ‘read yourmind’ game.
A total of 112 DNA strands assembled to form 72 initial DNA species (as
indicated by the red numbers in b, c) were mixed in solution at their respective
concentrations. The standard concentration was 135 25 nM. Selected inputs
corresponding to the human’s answers were then added with relative

concentrations of 53 (to set the initial states, inputs triggering the update of
multiple neurons are used, for example, w53,5 for x11 and w34,18 for x01). Dotted
and solid lines indicate dual-rail outputs x0i and x

1
i , respectively. For each signal,

if both dotted and solid lines stay ‘off’ (less than 0.2), the logic value is unknown,
‘?’; if the dotted (solid) line goes ‘on’ (greater than 0.65) and the solid (dotted)
line stays ‘off’, the logic value is ‘0’ (‘1’); if both dotted and solid lines go ‘on’, the
logic value is invalid, ‘x’. Arrows connect initial states of the four neurons
(inputs) to the final states (outputs at 8 h). The eight trajectories in each plot
were from two separate experiments (connecting either x0i or x

1
i to the

reporters) because we only have four distinct fluorophores. Sequences of strands
are listed in Supplementary Tables 5–7. Experiments were performed at 25 uC.
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of an integrating gate and an amplifying gate, in order to suppress leak
(Fig. 3c). The values of weights and thresholds determined by in silico
training were used to determine the concentrations of the 72 DNA
species that comprise the memory (Fig. 3b, c). In principle, the same
set of DNA molecules could be retrained to remember any of 500
distinct sets of patterns by adjusting weight and threshold concentra-
tions (Supplementary Information section 5).
In the tradition of using game-playing automata as a benchmark for

new computing technologies, we demonstrated the Hopfield network
in the context of a game called ‘read your mind’, which is played
between a human and the DNA associative memory in a cuvette
(Fig. 3d). The game consists of three steps. First, the human thinks
of a scientist, choosing from the listed four options (each scientist
corresponds to one of the four patterns; for example, Franklin is
0110) or someone else. Second, the human ‘tells’ the DNA associative
memory some of the answers to questionsQ1 toQ4 (Fig. 3d) by adding
corresponding DNA strands to the cuvette. Finally, after 8 h of ‘think-
ing’, the DNA associative memory will guess who is in the human’s
mind and ‘tell’ the human the rest of the answers by fluorescence
signals. In doing so, the four-neuron DNA associative memory exhi-
bits a brain-like behaviour: associative recall of memories based on
incomplete information.
Weplayed the game 27 timeswith theDNAassociativememory, out

of 81 possible ways of answering questions Q1 to Q4. Six examples are

shown in Fig. 3e; the rest are shown in Supplementary Figs 15–18. The
top left data in Fig. 3e can be interpreted as following: when the human
‘said’ that the scientist was born in the twentieth century (input x35 1)
but was not a mathematician (input x45 0), the DNA associative
memory ‘guessed’ that the scientist did not study neural networks (out-
put x1 was updated to 0) but was British (output x2 was updated to 1),
which indicated that the scientist was Rosalind Franklin (pattern 0110).
Similarly, the DNA associative memory was able to work out the other
three scientists correctly—in the best case, only one answer was given by
thehuman (themiddle right data). Thebottomleft data shows thatwhen
the informationprovided by the humanmatchedmultiple patterns (that
is, input x45 1 indicates that the scientist was amathematician, which is
true for both Alan Turing and Claude Shannon), the DNA associative
memory was able to identify that they were both born in the twentieth
century (output x3 was updated to 1), while the other outputs remained
unknown. The bottom right data show that the DNA associative
memory was also able to recognize information that was incompatible
with all memorized patterns by producing invalid output.
All experiments reported here were semiquantitatively reproduced

bymass action simulations using the exact model developed previously
for seesaw digital logic circuits17 with no changes to any rate constants
(see Supplementary Information section 7 and Supplementary Figs 19–
24 for comparisons to experiments, and Supplementary Figs 25–27 for
simulation predictions for the remaining 54 games).
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Figure 3 | A four-neuron Hopfield associative memory. a, The recurrent
linear threshold circuit. b, The resulting seesaw circuit using the dual-rail
implementation.Dashed lines indicate the connections to reporters. c, Four sets
of reporters with signal restoration that are connected to either x0i or x

1
i at any

given time. d, A ‘read your mind’ game between a human and the four-neuron
DNA associative memory that ‘remembers’ four scientists according to the
answers of four questions. e, Kinetics experiments of the ‘read yourmind’ game.
A total of 112 DNA strands assembled to form 72 initial DNA species (as
indicated by the red numbers in b, c) were mixed in solution at their respective
concentrations. The standard concentration was 135 25 nM. Selected inputs
corresponding to the human’s answers were then added with relative

concentrations of 53 (to set the initial states, inputs triggering the update of
multiple neurons are used, for example, w53,5 for x11 and w34,18 for x01). Dotted
and solid lines indicate dual-rail outputs x0i and x

1
i , respectively. For each signal,

if both dotted and solid lines stay ‘off’ (less than 0.2), the logic value is unknown,
‘?’; if the dotted (solid) line goes ‘on’ (greater than 0.65) and the solid (dotted)
line stays ‘off’, the logic value is ‘0’ (‘1’); if both dotted and solid lines go ‘on’, the
logic value is invalid, ‘x’. Arrows connect initial states of the four neurons
(inputs) to the final states (outputs at 8 h). The eight trajectories in each plot
were from two separate experiments (connecting either x0i or x

1
i to the

reporters) because we only have four distinct fluorophores. Sequences of strands
are listed in Supplementary Tables 5–7. Experiments were performed at 25 uC.
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112 DNA strands
72 initial DNA species

Qian, Winfree, Bruck, “Neural network computation with DNA 
strand displacement cascades,”  Nature 475: 368-372 (2011)

Neural networks with see-saw gates
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Goal:  Be able to take any mass-action CRN
and implement it in the test tube

1 : X1
30−→ 2X1

2 : 2X1
0.5−→ X1

3 : X2 +X1
1−→ 2X2

4 : X2
10−→

5 : X1 +X3
1−→

6 : X3
16.5−→ 2X3

7 : 2X3
0.5−→ X3

co
nc
en
tr
at
io
n

time

David Soloveichik, Georg Seelig, Erik Winfree, “DNA as a Universal Substrate for Chemical Kinetics”, 
PNAS 107: 5393-5398, 2010

• implicit energy/mass source (no conservation restrictions)
• can use auxiliary species to help mediate reactions
• desired behavior up to scaling in time and concentration 
• allow degree of approximation: correct behavior in some limit
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Format of formal species

...

invariant:  species is active if species identifier is entirely single-stranded

21 3

54 6

X

Y

?

?

?

87 9

Z

species 
identifier
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Unimolecular reaction X→Y

2 43 5

2* 3*1*
Translator gate 1

   X

21 3

and unreactive waste

4 65 7

4* 5*3*
Translator gate 2

4 65 7

    Y
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Unimolecular reaction X→Y

2 43 5

2* 3*1*

2 43 5

2* 3*1*

   X

unreactive wasteTranslator gate 1

intermediate output

2 43 5

intermediate output

21 3

21 3

4 65 7

4* 5*3*

4 65 7

4* 5*3*
unreactive wasteTranslator gate 2

    Y

2 43 5
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Bimolecular reaction X+Y→Z

2 5 76 8

21

3

3

54 6

5* 6*3* 4*2*1*

4 2 3 4

7 98 10

7* 8*6*

7 98 10

X

Y Z

and unreactive
waste

reaction gate

translator gate

backward strand
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Bimolecular reaction X+Y→Z

2 5 76 8

21

3

3

54 6

5* 6*3* 4*2*1*

4

2

5 76 821

3

3

5* 6*3* 4*2*1*

5 76 821 3

5* 6*3* 4*2*1*

54 6

5 76 8

5 76 8

21

5* 6*3* 4*2*1*

4

7 98 10

7* 8*6*

5 76 8

7 98 10

7* 8*6*

X

Y

Z

reaction gate activated reaction gate

activated reaction gate unreactive waste

intermediate output
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simulation of ideal CRN

simulation of DNA implementation

nM
Oregonator (limit cycle oscillator)

Rössler (chaotic)

nM

hr

hr0 50 100 150 200 250

1
2
3
4
5

0 10 20 30 40

1
2
3
4
5

Complex self-generated behavior with strand 
displacement cascades (simulations)

Predator-prey

Tuesday, September 20, 2011



Dynamic logic circuits and state machines with strand displacement 
cascades (simulations)
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Toward laboratory implementation of CRN ⇒ strand 
displacement cascades (work in progress)
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The Programming Language of Chemical Kinetics
Using the language of Chemical Reaction Networks (CRNs) 

prescriptively as a “programming language” rather than descriptively as 
a modeling language for existing systems

How To Discipline Your DNA Molecules with Strand 
Displacement Cascades

Strand Displacement Cascades is a flexible technology for implementing 
complex nucleic-acid reaction networks in the laboratory

stochastic and mass-action

catalytic amplifier, circuits, neural networks            theoretically can implement any CRNs

different notions of input&output            fast/slow         possible/impossible         deterministic/allowing error

artificial analogs of signaling networks            3 rules description
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